Saturday 7 November 2009

Vertebrae

A vertebra (plural: vertebrae) is an individual bone in the flexible column that defines vertebrate animals, e.g. humans. The vertebral column encases and protects the spinal cord, which runs from the base of the cranium down the dorsal side of the animal until reaching the pelvis. From there, vertebra continue into the tail.
Vertebrae are defined by regions. Cervical vertebrae are those in the neck area, and can range from a single vertebra in amphibians, to seven in most mammals and reptiles, and as many as 25 in swans or 76 in the extinct plesiosaur Elasmosaurus. The dorsal vertebrae range from the bottom of the neck to the top of the pelvis. Dorsal vertebrae attached to ribs are called thoracic vertebrae, while those without ribs are called lumbar vertebrae. The sacral vertebrae are those in the pelvic region, and range from one in amphibians, to two in most birds and modern reptiles, or up to 3 to 5 in mammals. When more than one sacral vertebrae are fused into a single structure, it is called the sacrum. The synsacrum is a similar fused structure found in birds that is composed of the sacral, lumbar, and some of the thoracic and caudal vertebra, as well as the pelvic girdle. Caudal vertebra compose the tail, and the final few can be fused into the pygostyle in birds, or into the coccygeal or tail bone in chimpanzees or humans.
Individual vertebra are composed of a centrum (body), arches protruding from the top and bottom of the centrum, and various processes projecting from the centrum and/or arches. An arch extending from the top of the centrum is called a neural arch, while the hemal arch or chevron is found underneath the centrum in the caudal (tail) vertebrae of fish, most reptiles, some birds, and some mammals with long tails. The vertebral processes can either give the structure rigidity, help them articulate with ribs, or serve as muscle attachment points. Common types are tranverse process, diapophyses, parapophyses, and zygapophyses (both the cranial zygapophyses and the caudal zygapophyses).
Amphicelous refers to a centrum that is concave at both ends, similar to those found in most fish. Opisthocoelous centra are convex in the front and concave in the back, similar to those of most salamanders. In contrast, procelous centra are concave in the front and convex in the back, as found in most frogs and modern reptiles. Centra with flat ends are acelous, like those in mammals. Birds have heterocelous centra, shaped like saddles at both ends.
There are normally thirty-three (33) vertebrae in humans, including the five that are fused to form the sacrum (the others are separated by intervertebral discs)) and the four coccygeal bones which form the tailbone. The upper three regions comprise the remaining 24, and are grouped under the names cervical (7 vertebrae), thoracic (12 vertebrae) and lumbar (5 vertebrae), according to the regions they occupy. This number is sometimes increased by an additional vertebra in one region, or it may be diminished in one region, the deficiency often being supplied by an additional vertebra in another. The number of cervical vertebrae is, however, very rarely increased or diminished.
With the exception of the first and second cervical, the true or movable vertebrae (the upper three regions) present certain common characteristics which are best studied by examining one from the middle of the thoracic region.
A typical vertebra consists of two essential parts: an anterior (front) segment, which is the vertebral body; and a posterior part – the vertebral (neural) arch – which encloses the vertebral foramen. The vertebral arch is formed by a pair of pedicles and a pair of laminae, and supports seven processes, four articular, two transverse, and one spinous, the latter also being known as the neural spine.
When the vertebrae are articulated with each other, the bodies form a strong pillar for the support of the head and trunk, and the vertebral foramina constitute a canal for the protection of the medulla spinalis (spinal cord). In between every pair of vertebrae are two apertures, the intervertebral foramina, one on either side, for the transmission of the spinal nerves and vessels.
Two transverse process and one spinous process are posterior to (behind) the vertebral body. The spinous process comes out the back, one transverse process comes out the left, and one on the right. The spinous processes of the cervical and lumbar regions can be felt through the skin. Superior and inferior articular facets on each vertebra act to restrict the range of movement possible. These facets are joined by a thin portion of the neural arch called the pars interarticulars.
The centra of the vertebra can be classified based upon the fusion of its elements. In aspidospondyly, bones such as the neural spine, the pleurocentrum and the intercentrum are separate ossifications. Fused elements however, classify a vertebra as having holospondyly.
A vertebra can also be described in terms of the shape of the ends of the centra. Humans are said to be acoelous, or with flat ends. These flat ends of the centra are especially good at supporting and distributing compressive forces. Amphicoelus vertebra is represented by both ends of the centra being concave. This shape is common in fish, where most motion is limited. Amphicoelus centra often are integrated with a full notochord. Procoelus vertebra are anteriorly concave, and posteriorly convex. An opisthocoelus vertebra however, possess anterior convexity, and posterior concavity. Heterocoelous vertebrae are saddle shaped at each end of the centra. This type of configuration is seen in turtles that retract their necks, and birds, because it permits extensive lateral and vertical flexion motion without stretching the nerve cord too extensively or wringing it about its long axis.

These seven (7) bones are generally small and delicate. Their spinous processes are short (with the exception of C2 and C7, which have palpable spinous processes). Numbered top-to-bottom from C1-C7,atlas (C1) and axis (C2), are the vertebrae that allow the neck and head so much movement. For the most part, the atlanto-occipital joint allows the skull to move up and down, while the atlanto-axial joint allows the upper neck to twist left and right. The axis also sits upon the first intervertebral disk of the spinal column. All mammals except manatees and sloths have seven cervical vertebrae, whatever the length of the neck.
Cervical vertebrae possess transverse foramina to allow for the vertebral arteries to pass through on their way to the foramen magnum to end in the circle of Willis. These are the smallest, lightest vertebrae and the vertebral foramina are triangular in shape. The spinous processes are short and often bifurcated (the spinous process of C7, however, is not bifurcated, and is substantially longer than that of the other cervical spinous processes).

The twelve (12) thoracic bones and their transverse processes have surfaces that articulate with the ribs. Some rotation can occur between the thoracic vertebrae, but their connection with the rib cage prevents much flexion or other excursion. They may also be known as 'dorsal vertebrae', in the human context.
Bodies are roughly heart-shaped and are about as wide anterio-posterioly as they are in the transverse dimension. Vertebral foramina are roughly circular in shape.

These five (5) vertebrae are very robust in construction, as they must support more weight than other vertebrae. They allow significant flexion and extension, moderate lateral flexion (sidebending), and a small degree of rotation. The discs between these vertebrae create a lumbar lordosis (curvature that is concave posteriorly) in the human spine.
There are five (5) vertebrae (S1-S5) and they are fused in maturity, with no intervertebral discs.

There are usually four (4) and rarely 3-5 vertebrae (Co1-Co5), with no intervertebral discs. Many animals have a greater number of "tail vertebrae" and, in animals, they are more commonly known as "caudal vertebrae." Pain at the coccyx,(tailbone) is known as coccydynia.
The striking segmented pattern of the human spine is established during embryogenesis when the precursor of the vertebrae, the somites, are rhythmically added to the forming posterior part of the embryo. In humans, somite formation begins around the third week post-fertilization and continues until a total of around 52 somites are formed. The somites are epithelial spheres that contain the precursors of the vertebrae, the ribs, the skeletal muscles of the body wall and limbs, and the dermis of the back. The periodicity of somite distribution and production is thought to be imposed by a molecular oscillator or clock acting in cells of the presomitic mesoderm (PSM). Somites form soon after the beginning of gastrulation, on both sides of the neural tube from a tissue called the presomitic mesoderm (PSM). The PSM is part of the paraxial mesoderm and is generated caudally by gastrulation when cells ingress through the primitive streak, and later, through the tail bud. Soon after their formation, somites become subdivided into the dermomyotome dorsally, which gives rise to the muscles and dermis, and the sclerotome ventrally which will form the spine components. Sclerotomes become subvidided into an anterior and a posterior compartment. This subdivision plays a key role in the definitive patterning of vertebrae which form when the posterior part of one somite fuses to the anterior part of the consecutive somite during a process termed resegmentation. Disruption of the somitogenesis process in humans results in diseases such as congenital scoliosis. So far, the human homologues of three genes associated to the mouse segmentation clock (MESP2, DLL3 and LFNG) have been shown to be mutated in human patients with human congenital scoliosis suggesting that the mechanisms involved in vertebral segmentation are conserved across vertebrates. In humans the first four somites are incoporated in the basi-occipital bone of the skull and the next 33 somites will form the vertebrae. The remaining posterior somites degenerate. During the fourth week of embryonic development, the sclerotomes shift their position to surround the spinal cord and the notochord. The sclerotome is made of mesoderm and originates from the ventromedial part of the somites. This column of tissue has a segmented appearance, with alternating areas of dense and less dense areas.
As the sclerotome develops, it condenses further eventually developing into the vertebral body. Development of the appropriate shapes of the vertebral bodies is regulated by HOX genes.
The less dense tissue that separates the sclerotome segments develop into the intervertebral discs.
The notochord disappears in the sclerotome (vertebral body) segments, but persists in the region of the intervertebral discs as the nucleus pulposus.. The nucleus pulposus and the fibers of the annulus fibrosus make up the intervertebral disc.
The primary curves (thoracic and sacral curvatures) form during fetal development. The secondary curves develop after birth. The cervical curvature forms as a result of lifting the head and the lumbar curvature forms as a result of walking.
There are various defects associated with vertebral development.Scoliosis will result in improper fusion of the vertebrae. In Klippel-Feil anomaly patients have two or more cervical vertebrae that are fused together, along with other associated birth defects. One of the most serious defects is failure of the vertebral arches to fuse. This results in a condition called spina bifida. There are several variations of spina bifida that reflect the severity of the defect.
The vertebrae of lobe-finned fishes consist of three discrete bony elements. The vertebral arch surrounds the spinal cord, and is of broadly similar form to that found in most other vertebrates. Just beneath the arch lies a small plate-like pleurocentrum, which protects the upper surface of the notochord, and below that, a larger arch-shaped intercentrum to protect the lower border. Both of these structures are embedded within a single cylindrical mass of cartilage. A similar arrangement was found in primitive tetrapods, but, in the evolutionary line that led to reptiles (and hence, also to mammals and birds), the intercentrum became partially or wholly replaced by an enlarged pleurocentrum, which in turn became the bony vertebral body.
In most ray-finned fishes, including all teleosts, these two structures are fused with, and embedded within, a solid piece of bone superficially resembling the vertebral body of mammals. In living amphibians, there is simply a cylindrical piece of bone below the vertebral arch, with no trace of the separate elements present in the early tetrapods.
In cartilagenous fish, such as sharks, the vertebrae consist of two cartilagenous tubes. The upper tube is formed from the vertebral arches, but also includes additional cartilagenous structures filling in the gaps between the vertebrae, and so enclosing the spinal cord in an essentially continuous sheath. The lower tube surrounds the notochord, and has a complex structure, often including multiple layers of calcification.
Lampreys have vertebral arches, but nothing resembling the vertebral bodies found in all higher vertebrates. Even the arches are discontinous, consisting of separate pieces of arch-shaped cartilage around the spinal cord in most parts of the body, changing to long strips of cartilage above and below in the tail region.Hagfishes lack a true vertebral column, and are therefore not properly considered vertebrates, but a few tiny neural arches are present in the tail

The Nose

Anatomically, a nose is a protuberance in vertebrates that houses the nostrils, or nares, which admit and expel air for respiration in conjunction with the mouth. Behind the nose is the olfactory mucosa and the sinuses. Behind the nasal cavity, air next passes through the pharynx, shared with the digestive system, and then into the rest of the respiratory system. In humans, the nose is located centrally on the face; on most other mammals, it is on the upper tip of the snout.
In cetaceans, the nose has been reduced to the nostrils, which have migrated to the top of the head, producing a more streamlined body shape and the ability to breathe while mostly submerged. Conversely, the elephant's nose has elaborated into a long, muscular, manipulative organ called the trunk.
As an interface between the body and the external world, the nose and associated structures frequently perform additional functions concerned with conditioning entering air (for instance, by warming and/or humidifying it, also for flicking if moving and by mostly reclaiming moisture from the air before it is exhaled (as occurs most efficiently in camels). The nose hairs are able to stop unwanted particles from entering the lungs.
In most mammals, the nose is the primary large organ for smelling. As the animal sniffs, the air flows through the nose and over structures called tubinates in the nasal cavity. Turbulent flow will promote mixing of the air in the nasal cavity allowing the molecules of a newly inhaled breath of air to reach the sensitive epithelium as fast as possible. Laminar flow would imply a stationary layer of air around the epithelium only to be entered by diffusion. Sniffing will cause more turbulence also. At the olfactory epithelium, odor molecules carried by the air dissolve in the fluid-covered cilia of the olfactory receptor neurons, where they bind to specific receptor proteins causing a depolarization of the receptor cell. At the glomeruli, dendrites of many receptor cells sensitive to the same kind of odor converge and from there a signal is forwarded to the brain's olfactory region.

Thursday 5 November 2009

the Spine

In human anatomy, the vertebral column (backbone or spine) is a column usually consisting of 33 vertebrae, the sacrum,intervertebral discs, and the coccyx situated in the dorsal aspect of the torso, separated by spinal discs. It houses the and protects the spinal cord in its spinal canal.
Viewed laterally the vertebral column presents several curves, which correspond to the different regions of the column, and are called cervical, thoracic,lumbar, and pelvic.
The cervical curve, convex forward, begins at the apex of the odontoid (tooth-like) process, and ends at the middle of the second thoracic vertebra; it is the least marked of all the curves.
The thoracic curve, concave forward, begins at the middle of the second and ends at the middle of the twelfth thoracic vertebra. Its most prominent point behind corresponds to the spinous process of the seventh thoracic vertebra. This curve is known as a tt curve.
The lumbar curve is more marked in the female than in the male; it begins at the middle of the last thoracic vertebra, and ends at the sacrovertebral angle. It is convex anteriorly, the convexity of the lower three vertebrae being much greater than that of the upper two. This curve is described as a lordotic curve.
The pelvic curve begins at the sacrovertebral articulation, and ends at the point of the coccyx; its concavity is directed downward and forward. .
The thoracic and pelvic curves are termed primary curves, because they alone are present during fetal life. The cervical and lumbar curves are compensatory or secondary, and are developed after birth, the former when the child is able to hold up its head (at three or four months) and to sit upright (at nine months), the latter at twelve or eighteen months, when the child begins to walk.

There are a total of 33 vertebrae in the vertebral column, if assuming 4 coccygeal vertebrae.
The individual vertebrae, named according to region and position, from superior to inferior, are:
Cervical: 7 vertebrae (C1–C7)
C1 is known as "atlas" and supports the head, C2 is known as "axis"
Possesses bifid spinous processes, which is absent in C1 and C7
Small-bodied
Thoracic: 12 vertebrae (T1–T12)
Distinguished by the presence of costal facets for the articulation of the heads of ribs
Body is intermediate in size between the cervical and lumbar vertebrae
Lumbar: 5 vertebrae (L1–L5)
Has a large body
Does not have costal facets nor transverse process foramina
Sacral: 5 (fused) vertebrae (S1–S5)
Coccygeal: 4 (3–5) (fused) vertebrae (Tailbone)
When viewed from in front, the width of the bodies of the vertebrae is seen to increase from the second cervical to the first thoracic; there is then a slight diminution in the next three vertebrae; below this there is again a gradual and progressive increase in width as low as the sacrovertebral angle. From this point there is a rapid diminution, to the apex of the coccyx.
The posterior surface of the vertebral column presents in the median line the spinous processes. In the cervical region (with the exception of the second and seventh vertebrae) these are short and horizontal, with bifid extremities. In the upper part of the thoracic region they are directed obliquely downward; in the middle they are almost vertical, and in the lower part they are nearly horizontal. In the lumbar region they are nearly horizontal. The spinous processes are separated by considerable intervals in the lumbar region, by narrower intervals in the neck, and are closely approximated in the middle of the thoracic region. Occasionally one of these processes deviates a little from the median line — a fact to be remembered in practice, as irregularities of this sort are attendant also on fractures or displacements of the vertebral column. On either side of the spinous processes is the vertebral groove formed by the laminae in the cervical and lumbar regions, where it is shallow, and by the laminae and transverse processes in the thoracic region, where it is deep and broad; these grooves lodge the deep muscles of the back. Lateral to the vertebral grooves are the articular processes, and still more laterally the transverse processes. In the thoracic region, the transverse processes stand backward, on a plane considerably behind that of the same processes in the cervical and lumbar regions. In the cervical region, the transverse processes are placed in front of the articular processes, lateral to the pedicles and between the intervertebral foramina. In the thoracic region they are posterior to the pedicles, intervertebral foramina, and articular processes. In the lumbar region they are in front of the articular processes, but behind the intervertebral foramina.
Lateral surfaces
The lateral surfaces are separated from the posterior surface by the articular processes in the cervical and lumbar regions, and by the transverse processes in the thoracic region. They present, in front, the sides of the bodies of the vertebrae, marked in the thoracic region by the facets for articulation with the heads of the ribs. More posteriorly are the intervertebral foramina, formed by the juxtaposition of the vertebral notches, oval in shape, smallest in the cervical and upper part of the thoracic regions, and gradually increasing in size to the last lumbar. They transmit the spinal nerves and are situated between the transverse processes in the cervical region, and in front of them in the thoracic and lumbar regions.
T3 is at level of medial part of spine of scapula. T7 is at inferior angle of the scapula. L4 is at highest point of iliac crest. S2 is at the level of posterior superior iliac spine. T12 can be found by identifying the lowest pair of ribs and tracing them to their thoracic attachment. Furthermore, C7 is easily localized as a prominence at the lower part of the neck.
The vertebral canal follows the different curves of the column; it is large and triangular in those parts of the column which enjoy the greatest freedom of movement, such as the cervical and lumbar regions; and is small and rounded in the thoracic region, where motion is more limited.
Occasionally the coalescence of the laminae is not completed, and consequently a cleft is left in the arches of the vertebrae, through which a protrusion of the spinal membranes (dura mater and arachnoid), and generally of the spinal cord (medulla spinalis) itself, takes place, constituting the malformation known as spina bifida. This condition is most common in the lumbosacral region, but it may occur in the thoracic or cervical region, or the arches throughout the whole length of the canal may remain incomplete.
The following abnormal curvatures may occur in some people:
Kyphosis is an exaggerated kyphotic (posterior) curvature in the thoracic region. This produces the so-called "humpback" or "dowager's hump", a condition commonly observed in osteoporosis.
Lordosis is an exaggerated lordotic (anterior) curvature of the lumbar region, "swayback". Temporary lordosis is common among pregnant women.
Retrolisthesis is a posterior displacement of one vertebral body with respect to the adjacent vertebral segment to a degree less than a luxation (dislocation).
Scoliosis, lateral curvature, is the most common abnormal curvature, occurring in 0.5% of the population. It is more common among females and may result from unequal growth of the two sides of one or more vertebrae. It can also be caused by pulmonary atelectasis (partial or complete deflation of one or more lobes of the lungs) as observed in asthma or pneumothorax.