Sunday 4 October 2009

Teeth

Teeth (singular tooth) are small whitish structures found in the jaws (or mouths) of many vertebrates that are used to tear, scrape, and chew food. Some animals, particularly carnivores, also use teeth for hunting or defense. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of tissues of varying density and hardness.
Teeth are among the most distinctive (and long-lasting) features of mammal species. Paleontoleogists use teeth to identify fossil species and determine their relationships. The shape of the animal's teeth are related to its diet. For example, plant matter is hard to digest, so herbivores have many molars for chewing. Carnivores, on the other hand, need canines to kill prey and to tear meat.
Mammals are diphyodont, meaning that they develop two sets of teeth. In humans, the first set (the "baby," "milk," "primary" or "deciduous" set) normally starts to appear at about six months of age, although some babies are born with one or more visible teeth, known as neonatal teeth. Normal tooth eruption at about six months is known as teething and can be painful.
Some animals develop only one set of teeth (monophyodont) while others develop many sets (polyphyodont).Sharks, for example, grow a new set of teeth every two weeks to replace worn teeth.Rodent incisors grow and wear away continually through gnawing, maintaining relatively constant length. Many rodents such as voles (but not mice) and guinea pigs, as well as rabbits, have continuously growing molars in addition to incisors.
The bottom teeth are used more for the grinding of food and the top front teeth are mainly used for biting.
Dental anatomy is a field of anatomy dedicated to the study of tooth structures. The development, appearance, and classification of teeth fall within its field of study, though dental occlusion, or contact among teeth, does not. Dental anatomy is also a taxonomical science as it is concerned with the naming of teeth and their structures. This information serves a practical purpose for dentists, enabling them to easily identify teeth and structures during treatment.
The anatomic crown of a tooth is the area covered in enamel above the cementoenamel junction (CEJ). The majority of the crown is composed of dentin with the pulp chamber in the center. The crown is within bone before eruption. After eruption, it is almost always visible. The anatomic root is found below the cementoenamel junction and is covered with cementum. As with the crown, dentin composes most of the root, which normally have pulp canals. A tooth may have multiple roots or just one root. Canines and most premolars, except for maxillary (upper) first premolars, usually have one root. Maxillary first premolars and mandibular molars usually have two roots. Maxillary molars usually have three roots. Additional roots are referred to as supernumerary roots.Humans usually have 20 primary teeth (also called deciduous, baby, or milk teeth) and 32 permanent teeth. Among primary teeth, 10 are found in the (upper) maxilla and the other 10 in the (lower) mandible. Teeth are classified as incisors, canines, and molars. In the primary set of teeth, there are two types of incisors, centrals and laterals, and two types of molars, first and second. All primary teeth are replaced with permanent counterparts except for molars, which are replaced by permanent premolars. Among permanent teeth, 16 are found in the maxilla with the other 16 in the mandible. The maxillary teeth are the maxillary central incisor, maxillary lateral incisor, maxillary canine, maxillary first premolar ,maxillary second premolar , maxillary first molar, maxillary second molar, and maxillary third molar . The mandibular teeth are the mandibular central incisor, mandibular lateral incisor, mandibular canine , mandibular first premolar , mandibular second premolar, mandibular first molar,mandibular second molar, and mandibular third molar. Third molars are commonly called " wisdom teeth" and may never erupt into the mouth or form at all. If any additional teeth form, for example, fourth and fifth molars, which are rare, they are referred to as supernumerary teeth.
Most teeth have identifiable features that distinguish them from others. There are several different notation systems to refer to a specific tooth. The three most common systems are the FDI World Dental Federation, the universal numbering system , and Palmer notation method. The FDI system is used worldwide, and the universal is used widely in the United States.

Enamel is the hardest and most highly mineralized substance of the body and is one of the four major tissues which make up the tooth, along with dentin, cementum, and dental pulp. It is normally visible and must be supported by underlying dentin. Ninety-six percent of enamel consists of mineral, with water and organic material composing the rest. The normal color of enamel varies from light yellow to grayish white. At the edges of teeth where there is no dentin underlying the enamel, the color sometimes has a slightly blue tone. Since enamel is semitranslucent, the color of dentin and any restorative dental material underneath the enamel strongly affects the appearance of a tooth. Enamel varies in thickness over the surface of the tooth and is often thickest at the cusp, up to 2.5 mm, and thinnest at its border, which is seen clinically as the cementoenamel junction (CEJ).
Enamel's primary mineral is hydroxyapatite, which is a crystalline calcium phosphate. The large amount of minerals in enamel accounts not only for its strength but also for its brittleness. Dentin, which is less mineralized and less brittle, compensates for enamel and is necessary as a support. Unlike dentin and bone, enamel does not contain collagen. Instead, it has two unique classes of proteins called amelogenins and enamelins. While the role of these proteins is not fully understood, it is believed that they aid in the development of enamel by serving as framework support among other functions.
Dentin is the substance between enamel or cementum and the pulp chamber. It is secreted by the odontoblasts of the dental pulp. The formation of dentin is known as dentinogenesis. The porous, yellow-hued material is made up of 70% inorganic materials, 20% organic materials, and 10% water by weight. Because it is softer than enamel, it decays more rapidly and is subject to severe cavities if not properly treated, but dentin still acts as a protective layer and supports the crown of the tooth.
Dentin is a mineralized connective tissue with an organic matrix of collagenous proteins. Dentin has microscopic channels, called dentinal tubules, which radiate outward through the dentin from the pulp cavity to the exterior cementum or enamel border. The diameter of these tubules range from 2.5 μm near the pulp, to 1.2 μm in the midportion, and 900 nm near the dentino-enamel junction. Although they may have tiny side-branches, the tubules do not intersect with each other. Their length is dictated by the radius of the tooth. The three dimensional configuration of the dentinal tubules is genetically determined.
Cementum is a specialized bony substance covering the root of a tooth. It is approximately 45% inorganic material (mainly hydroxyapatite), 33% organic material (mainly collagen) and 22% water. Cementum is excreted by cementoblasts within the root of the tooth and is thickest at the root apex. Its coloration is yellowish and it is softer than either dentin or enamel. The principal role of cementum is to serve as a medium by which the periodontal ligaments can attach to the tooth for stability. At the cementoenamel junction, the cementum is acellular due to its lack of cellular components, and this acellular type covers at least ⅔ of the root. The more permeable form of cementum, cellular cementum, covers about ⅓ of the root apex.

The dental pulp is the central part of the tooth filled with soft connective tissue. This tissue contains blood vessels and nerves that enter the tooth from a hole at the apex of the root. Along the border between the dentin and the pulp are odontoblasts, which initiate the formation of dentin. Other cells in the pulp include fibroblasts, preodontoblasts,macrophages and T lymphocytes. The pulp is commonly called "the nerve" of the tooth.
The periodontium is the supporting structure of a tooth, helping to attach the tooth to surrounding tissues and to allow sensations of touch and pressure. It consists of the cementum, periodontal ligaments,alveolar bone, and gingiva. Of these, cementum is the only one that is a part of a tooth. Periodontal ligaments connect the alveolar bone to the cementum. Alveolar bone surrounds the roots of teeth to provide support and creates what is commonly called an alveolus, or "socket". Lying over the bone is the gingiva or gum, which is readily visible in the mouth.
The peridontal ligament is a specialized connective tissue that attaches the cementum of a tooth to the alveolar bone. This tissue covers the root of the tooth within the bone. Each ligament has a width of 0.15 - 0.38 mm, but this size decreases over time. The functions of the periodontal ligaments include attachment of the tooth to the bone, support for the tooth, formation and resorption of bone during tooth movement, sensation, and eruption. The cells of the periodontal ligaments include osteoblasts, osteoclasts, fibroblasts, macrophages, cementoblasts, and epithelial cell rests of Malassez. Consisting of mostly Type I and III collagen, the fibers are grouped in bundles and named according to their location. The groups of fibers are named alveolar crest, horizontal, oblique, periapical, and interradicular fibers. The nerve supply generally enters from the bone apical to the tooth and forms a network around the tooth toward the crest of the gingiva.When pressure is exerted on a tooth, such as during chewing or biting, the tooth moves slightly in its socket and puts tension on the periodontal ligaments. The nerve fibers can then send the information to the central nervous system for interpretation
The alveolar bone is the bone of the jaw which forms the alveolus around teeth. Like any other bone in the human body, alveolar bone is modified throughout life.Osteoblasts create bone and ostosteoclasts destroy it, especially if force is placed on a tooth. As is the case when movement of teeth is attempted through orthodontics, an area of bone under compressive force from a tooth moving toward it has a high osteoclast level, resulting in bone resorption. An area of bone receiving tension from periodontal ligaments attached to a tooth moving away from it has a high number of osteoblasts, resulting in bone formation
The gingiva ("gums") is the mucosal tissue that overlays the jaws. There are three different types of epithelium associated with the gingiva: gingival, junctional, and sulcular epithelium. These three types form from a mass of epithelial cells known as the epithelial cuff between the tooth and the mouth. The gingival epithelium is not associated directly with tooth attachment and is visible in the mouth. The junctional epithelium, composed of the basal lamina and hemidesmosomes, forms an attachment to the tooth. The sulcular epithelium is nonkeratinized stratified squamous tissue on the gingiva which touches but is not attached to the tooth. This leaves a small potential space between the gingiva and tooth which can collect bacteria, plaque, and calculus.

No comments:

Post a Comment